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Wetting of a spherical particle by a nematic liquid crystal
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We discuss how the curvature of a substrate influences wetting by a nematic liquid crystal concentrating on
the surface of a spherical particle. Our investigation is based on Landau–de Gennes free energy formulated in
terms of second-rank nematic order parameterQi j . We review the method to treat wetting transitions in curved
geometries and calculate the wetting phase diagram in terms of the temperature and a surface coupling
parameter. We find that the length of the prewetting line which corresponds to the boundary-layer transitions
introduced by Sheng@Phys. Rev. A26, 1610~1982!# gradually decreases with a decrease in particle radius until
it vanishes completely below a critical radius of about 100 nm. The prewetting line ends at a critical point
which we study in detail. By interpreting the effect of curvature as an effective shift in temperature in
Landau–de Gennes theory, we are able to formulate a good estimate for the critical temperature as a function
of the inverse particle radius. It demonstrates that splay deformations around the particle significantly influence
nematic wetting of curved surfaces.
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I. INTRODUCTION

The wetting of surfaces by a fluid has tremendous ind
trial applications as exemplified by the famous Lotus eff
@1#. For three decades, wetting has been intensively stu
@2,3# and, in connection with nanostructuring of surfaces a
microfluidic, it gains further importance. In his seminal p
per @4#, Cahn argued on the basis of mean-field theory th
two-phase system moving along the coexistence line tow
its critical point exhibits complete wetting beyond the we
ting temperatureTw . Furthermore, a prewetting line exis
which starts on the coexistence curve atTw and ends at a
critical point located in the region of either phase 1 or
Cahn’s work was extended@5# and then wetting of curved
surfaces of cylinders and spheres was studied@6–9#, also
within density-functional theory@10#. The main features are
that complete wetting cannot occur on curved surfaces
that the prewetting line vanishes with increasing curvatu
Experimental observations of wetting phenomena on sph
and cylinders are reported in Refs.@11# and @12#.

Surface phenomena in liquid crystals are widely stud
@13,14# partly due to their importance in liquid crystal dis
plays. Sheng was the first to investigate the so-ca
boundary-layer transition in nematic liquid crystals close t
planar substrate and above the isotropic–nematic phase
sition @15#. It corresponds to the prewetting transition me
tioned above. Detailed investigations were then perform
by Poniewierski and Sluckin@16,17# who also elaborated
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upon the connection to wetting. Experiments confirm the s
face induced nematic order@18,19# and recently the
boundary-layer transition was observed@20#. Numerical
studies and density functional theory established comp
orientational wetting@21#.

In this article we report on the effect of curvature o
nematic wetting layers. Our work is stimulated by rece
investigations of surface-induced nematic order around
loidal particles and their effect on the stability of colloid
dispersions@22–24#. So far theoretical studies have bee
based on the harmonic approximation of the Landau–
Gennes free energy functional. Here, we will employ co
plete Landau–de Gennes theory to study orientational w
ting around a spherical particle. Since the conventio
method to treat wetting transitions in planar geometr
@4,15# is no longer applicable for systems with curve
boundaries, we will apply a method outlined in Refs.@6,8#,
and @9#.

The results of our investigation are summarized in Fig.
where we plot the prewetting line for different reduced p
ticle radii as a function of the temperature and surfa
coupling parameterw, also called the surface-ordering fiel
Let us first review the planar geometry@15# ~that corresponds
to an infinite particle radius! and place it within the contex
of wetting. At temperatures well above the reduced bu
transition temperaturet IN50.125, the nematic scalar orde
parameterQ̄0 at the surface assumes its small ‘‘thin-laye
value. When traversingt IN for w,0.037, it jumps to a value
closer to that of nematic bulk parameterQ̄b . In the treatment
by Cahn@4#, this corresponds to a situation where the ne
©2004 The American Physical Society14-1
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FUKUDA, STARK, AND YOKOYAMA PHYSICAL REVIEW E 69, 021714 ~2004!
atic phase only partially wets the surface. Whenw.0.037,
the surface order parameter exhibits a boundary-layer tra
tion at the prewetting line where it jumps from its thin-lay
to the larger ‘‘thick-layer’’ value. The prewetting line ends
a critical point (t* ,w* ) indicated by a plus sign. Forw
.w* , the surface order parameter behaves smoothly wi
decrease in temperature. Following the analysis of Cahn@4#,
the nematic phase completely wets the bounding surfac
t IN if w is chosen larger than the so-called wetting surfa
coupling parameterwm50.037 @25# introduced in full anal-
ogy to the wetting temperature. To see this we note tha
t IN the thick-layer value of the surface order paramete
always larger than the bulk valueQ̄b . So between the sub
strate and isotropic phase, we can fill in a macroscopic
thick layer of nematic phase, i.e., complete wetting. No
Fig. 1 clearly indicates the effect of curvature on t
boundary-layer transition. The length of the prewetting li
gradually decreases with a decrease in particle radius an
line completely vanishes below a reduced critical radius
R̄0* 528.9, corresponding to 100 nm for a typical nema
mesogen. As a further effect of curvature, we observe
complete wetting att IN is suppressed since the surface te
sion at the interface between the nematic and isotro
phases grows according to the square of the distance
the center of the sphere. We will demonstrate in this art
that, compared to wetting with, e.g., binary fluids, elas
distortion of the director field close to the particle surface h
a pronounced effect on the wetting properties of nem
liquid crystals.

In the following, we review theory needed to calculate t
phase diagram of Fig. 1~Sec. II! and then discuss details o
our results~Sec. III!. We finish with a conclusion~Sec. IV!
where we suggest extensions of the present work and c
ment on experimental verification.

II. DESCRIPTION OF THE MODEL

A. Free energy

We begin with a description of our model by writing th
free energy of the system in terms of the local orientatio

FIG. 1. Prewetting lines for different reduced particle radiiR̄0

~see numbers close to the plus signs! as a function of temperaturet
and surface-coupling parameterw. The lines start at the bulk phas
transition temperaturet IN51/8 and end at critical points (t* ,w* )
indicated by the plus sign. Surface-layer transitions do not oc

below R̄0528.9.
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order parameter of a nematic liquid crystal for which w
adopt the second-rank symmetric and traceless te
Qab(r) @26#, also called the alignment tensor@27#. The free
energy densityf bulk of a nematic liquid crystal in the bulk
is given by the sum of the local and elastic energy. We w
the former in terms of Landau–de Gennes expansion@26#
as f local5(1/2)AQab

2 2(1/3)BQabQbgQga1(1/4)C(Qab
2 )2,

with A,B andC phenomenological coefficients. Greek ind
ces denote Cartesian coordinates and summation
repeated indices is implied. For simplicity, we adopt t
one-constant form of the elastic energy asf el
5(1/2)L1(]gQab)2, whereL1 is the elastic constant.

The phenomenological surface free energy densityf s de-
scribes the capability of the bounding surfaces to induce
entational order right at the surface. In this article, followi
the work of Sheng@15#, we employ the simple formf s
52WQabnanb , where the phenomenological surfac
coupling parameterW, also called the surface-ordering fiel
characterizes the strength of anchoring andna is the unit
vector normal to the surface. This surface energy is
straightforward generalization of that used by Sheng@15#,
who discussed the boundary-layer transition of a nematic
a flat substrate. The minus sign in front ofW.0 implies that
at the surface homeotropic ordering is preferred. We ad
this simple surface energy because one of the aims of
article is a concise presentation of the method needed to
the effect of curvature on the boundary-layer transitio
Based on the present investigation, more general type
surface free energy that contain, e.g., quadratic terms
Qab , can be studied.

The total free energy of the system is now written asF
5*Vd3r f bulk1*Sd2r f s , whereV is the volume occupied by
the liquid crystal andS denotes the bounding surfaces. T
simplify the discussion below, we use reduced quantities.
rescale the orientational order parameter toQab5sQ̄ab with
s52A6B/9C and write all lengths in units ofjn

[AL1 /Cs25A27L1C/8B2, where 2A2jn denotes the nem
atic coherence length at the isotropic–nematic phase tra
tion. The rescaled free energy of the system then reads

F

jn
3D f

5E d3r̄H 1

2
tQ̄ab

2 2
A6

4
Q̄abQ̄bgQ̄ga1

1

4
~Q̄ab

2 !2

1
1

2
~ ]̄gQ̄ab!2J 2E d2r̄wQ̄abnanb , ~1!

where r̄5r/jn , ]̄g5jn]g and t[A/Cs2527AC/8B2 gives
the reduced temperature. The unit of the free energyD f
[Cs4564B4/729C3 is proportional to the latent heat an
the reduced anchoring strength is defined asw[Wjn /L1s.

In this article we consider the effect of one spherical p
ticle on the phase transition behavior of a nematic liqu
crystal close to the particle’s surface. We place the cente
the sphere at the origin and denote the radius byR0

5R̄0jn . According to the symmetry of the system, w
choose the uniaxial order-parameter profileQ̄ab( r̄)5Q̄( r̄ )
3(êa

r êb
r 2 1

3 dab), whereêr is the unit vector along the radia

r

4-2
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WETTING OF A SPHERICAL PARTICLE BY A . . . PHYSICAL REVIEW E69, 021714 ~2004!
direction~that represents the nematic director! and the scalar
order parameterQ̄( r̄ ) only depends onr̄ , the ~reduced! dis-
tance from the center of the particle. With this choice,
free energy of Eq.~1! is then written in terms ofQ̄( r̄ ) as

F̄[
3F

8pjnR0
2D f

5
1

R̄0
2ER̄0

`

dr̄ r̄ 2H f̄ ~Q̄!13S Q̄

r̄ 2D 1
1

2 S dQ̄

dr̄
D 2J

2wQ̄u r̄ 5R̄0
, ~2!

with the bulk local energyf̄ in terms ofQ̄ being

f̄ ~Q̄!5
1

2
tQ̄22

A6

12
Q̄31

1

6
Q̄4. ~3!

Note that the second term of the integrand in Eq.~2! is as-
sociated with splay deformation of the orientational ord
around the spherical particle. It is specific to a nematic liq
crystal and therefore absent in similar investigations of w
ting in a binary fluid whose composition is specified by
scalar order parameter@9#. In addition, this second term ca
be viewed as an effective shift in temperature, depending
radial coordinater̄ .

For later use, we summarize the properties of the b
isotropic–nematic transition deduced from the local free
ergy ~3!. The bulk isotropic–nematic phase transition occ
at reduced temperature,t IN51/8, and the nematic order pa
rameter at the point of transition isQ̄IN5A6/4.0.612. The
metastable nematic phase exists in the temperature ran
t IN,t,9/64 with a limiting order parameter ofQ̄*
53A6/16.0.459 at the superheating temperature,t59/64.
Finally, the isotropic phase becomes unstable at the su
cooling temperature,t50.

B. Determination of the order-parameter profile
and phase behavior

The order-parameter profileQ̄( r̄ ) that minimizes the free
energy ~1! is determined bydF/dQ̄50, which yields the
following Euler–Lagrange equation:

d f̄

dQ̄
1

6Q̄

r̄ 2
2

2

r̄

dQ̄

dr̄
2

d2Q̄

dr̄2
50, ~4!

together with boundary conditions

dQ̄

dr̄
U

r̄ 5R̄0

52w, ~5!

Q̄u r̄ 5`50. ~6!

Boundary condition~6! implies that the bulk is in the isotro
pic state. Note that in the nematic state, the spherical s
metry of our system with its radial order parameter profile
an artificial situation since it creates global splay deform
02171
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tion around the particle. We, therefore, restrict our discuss
to the isotropic bulk state assumingt.t IN51/8.

The boundary-layer transition is monitored by a jump
the scalar order parameter at the surface,Q̄u r̄ 5R̄0

5Q̄0. In the

planar case, which follows from our system forR̄0→`, the
Euler–Lagrange equation, Eq.~4!, with the vanishing second
and third terms can be integrated at once and together
boundary condition~5!, the surface order parameter follow
from @2 f̄ (Q̄0)#1/25w. When multiple solutions exist, the
absolute minimum of the total free energyF̄

5*0
Q̄0$@2 f̄ (Q̄)#1/22w%dQ̄ has to be identified. Furthermore

a boundary-layer transition between different branches
minima is indicated in a Maxwell construction. This pat
way, outlined by Sheng@15# and by Cahn@4#, is no longer
possible for curved surfaces. A first integral of Eq.~4! no
longer exists. This is obvious from mechanical analogy w
the replacement ofQ̄→x and r̄→t, where the second an
third terms of Eq.~4! represent a time dependent potent
and a friction term, respectively@7,9#. Instead, we follow a
method outlined in Refs.@6# and @8# and use it in a version
introduced in Ref.@9#. We solve Eq.~4! for fixed Q̄0 at the
particle surface. We thus arrive at a family of orientation
profiles for which we calculate the free energyF̄(Q̄0) which
is now a function in the variableQ̄0. On the other hand, we
consider the variationdF̄ of our free energy within the fam
ily of profiles, just introduced. Since these profiles satisfy
bulk Euler–Lagrange equation, Eq.~4!, the bulk term in the
variation vanishes and the surface term gives

dF̄~Q̄0!

dQ̄0

52
dQ̄

dr̄
U

r̄ 5R̄0

2w, ~7!

where we replaceddF̄ by dF̄(Q̄0). The conditiondF̄/dQ̄0

50 for a minimum of the total free energyF̄(Q̄0) then
reproduces boundary condition~5!. So if we plot
2(dQ̄/dr̄)u r̄ 5R̄0

as a function ofQ̄0, the possible surface
order parameters are the intersections with the constanw
~see Fig. 2!. Their free energies are calculated by integrati
Eq. ~7! and the absolute minimum ofF̄(Q̄0) then gives the
stable surface-order parameterQ̄0.

Suppose we find two solutions,Q̄1 and Q̄2, of Eq. ~5!,
then a first-order phase transition between the branche
the two minima occurs if

F̄~Q̄2!2F̄~Q̄1!5E
Q̄1

Q̄2
dQ̄0H 2

dQ̄

dr̄
U

r̄ 5R̄0

2wJ 50. ~8!

This is a variant of Maxwell’s construction illustrated in Fig
2; since the two shaded regions possess equal areas
boundary-layer transition takes place. Note that the third
lution, Q̄3, corresponds to a maximum of the free energy a
is therefore unstable. If surface constantw decreases relative
4-3
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to the value in Fig. 2, thin-layer parameterQ̄1 is stable,
whereas thick-layer parameterQ̄2 is realized for increasing
w.

The critical points in the phase diagram of Fig. 1 occ
when (dQ̄/dr̄)u r̄ 5R̄0

as a function ofQ̄0 possesses a sadd
point @see Figs. 3~a!–3~c!#,

]

]Q̄0

dQ̄

dr̄
U

r̄ 5R̄0

5
]2

]Q̄0
2

dQ̄

dr̄
U

r̄ 5R̄0

50, ~9!

which determines the ‘‘critical temperature’’t* . By varying
surface coupling parameterw, the number of possible solu

FIG. 2. Illustration of generalized Maxwell construction@see
Eq. ~8!#. The first-order surface-layer transition occurs between

small thin-layer (Q̄1) and the large thick-layer (Q̄2) order param-
eters when the areas of the two shaded regions are equal.
02171
r

tions of boundary equation~5! changes from three to one o
vice versa, so the ‘‘critical anchoring strength’’w* for a
given particle radiusR̄0 is the solution of Eq.~5! at the
saddle point.

III. RESULTS

In Fig. 3, we show plots of2(dQ̄/dr̄)u r̄ 5R̄0
as a function

of Q̄0 for various particle radiiR̄0. The parameter of the
curves in each plot is the temperature. In Fig. 3~a!, we
present, as a reference, the results forR̄05`, i.e., a planar
surface. Note that in this case the single curves can be d
mined completely analytically@15#. At the bulk transition
temperaturet IN50.125, the derivative2(dQ̄/dr̄)u r̄ 5R̄0

be-

comes zero for bulk order parameterQ̄b . The critical point
in the phase diagram of Fig. 1 is given by the superhea
temperaturet* 59/6450.140 625 andw* 59/128.0.0703.
For t.t* , the curves are monotonic functions ofQ̄0.

A large but finite radius ofR̄05200 is chosen in Fig. 3~b!.
Although it is similar to that in Fig. 3~a!, the derivative
2(dQ̄/dr̄)u r̄ 5R̄0

never reaches zero for any finiteR̄0. This is
partly due to the effective shift in temperature, mention
earlier in the discussion following Eq.~3!.

Critical radius R̄0* , where the length of the prewettin
line shrinks to zero, is determined by the requirement t
critical condition~9! is satisfied att5t IN . We numerically
obtain R̄0* .28.9, and the appropriate plot is presented

Fig. 3~c!. For anyR̄0,R̄0* @see Fig. 3~d! for R̄0510], the
curves are monotonic functions for allt.t IN . Therefore, a
boundary-layer transition can no longer occur. On the ba

e

FIG. 3. Plots of2(dQ̄/dr̄)u r̄ 5R̄0
vs Q̄0 for various particle radii:R̄05 ~a! ` ~planar surface!, ~b! 200, ~c! 28.9 ~critical radius!, and~d!

10. The numbers on the lines indicatet. The curves at the critical temperaturet* are plotted as thick lines.
4-4
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WETTING OF A SPHERICAL PARTICLE BY A . . . PHYSICAL REVIEW E69, 021714 ~2004!
of the plots in Fig. 3, we determined the phase diagram
Fig. 1, which shows the prewetting lines for different partic
radii, as already discussed in Sec. I.

For typical nematic mesogens, the nematic cohere
length 2A2jn is of the order of 10 nm@26#, so in real units
the critical radius becomesR0* .100 nm. This means that in
colloidal dispersions with particle radii larger than appro
mately 100 nm, the boundary-layer transition should be
servable.

In Fig. 4 we illustrate the order-parameter profiles for t
reduced particle radiusR̄05200 and surface-coupling pa
rameterw50.06 by plotting the scalar order parameterQ̄ as
a function of radial distancer̄ ~measured from the center o
the sphere!. At the bulk transition temperaturet IN50.125
@see curve~1!#, the order parameter decays on a length sc
of about four times the nematic coherence length 2A2jn ,
indicating that the particle is wetted by the nematic pha
However, due to the spherical geometry, complete wet
cannot occur since the surface tension at the interface
tween nematic and isotropic phases grows asr̄ 2. Curves~2!
and~3! show the respective thick-film and thin-film solution
right at the prewetting line at reduced temperature ot
50.132 24. The discontinuity in the surface order parame
is clearly visible.

In the following, we discuss further details of the prewe
ting line. From Fig. 1 we know that the possible anchori
strengthsw where a boundary-layer transition occurs a
bounded from above by the critical valuew* and from below
by a value which we denote bywt . At anchoring strength
wt , the prewetting line intersects the coexistence line at
bulk transition temperature,t IN50.125. Or, mathematically
speaking, fort IN condition ~8! of Maxwell’s construction is
fulfilled at wt . In Fig. 5 we plot bothw* andwt as a func-
tion of the inverse particle radius, 1/R̄0. We find that the
dependence ofw* on the particle radius is rather weak an
that the width of the region bounded by the two curv
~where boundary-layer transitions occur! decreases almos
linearly with 1/R̄0. If we view the effect of curvature on thi
width as expansion in terms of 1/R̄0, this means that the
linear term is far more dominant than the higher-order c

FIG. 4. Scalar order parameterQ̄ as a function of radial distanc

r̄ ~measured from the center of the sphere! for R̄05200 andw
50.06. Curve~1! is at t IN . Curves~2! and ~3! are the respective
thick-film and thin-film profiles right at the prewetting line fort
50.132 24.
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tributions, which is reasonable forR̄0.R̄0* .28.9.
Finally, in Fig. 6, we plot the critical temperaturet* as a

function of 1/R̄0 ~see the plus symbols!. We notice again
that, for the planar surface (1/R̄050), the critical tempera-
turetplanar* 59/6450.140 625 coincides with the superheatin
temperature of the nematic phase. Now, the decrease ot*
with increasing curvature (1/R̄0) reflects suppression of th
boundary-layer transition due to elastic deformation in
order parameter induced by the curved surface of the
ticle. To show that distortion of the director field contribut
significantly to this decrease, we present the following e
mate. The linear part of the Euler–Lagrange equation,
~4!, reads Q̄$t16/r̄ 22(2/r̄ )(dQ̄/dr̄)/Q̄%2(d2Q̄/dr̄2)50.
The first and the fourth terms already appear in planar ge
etry. The second term results from distortion of the direc
field. It is, therefore, specific to the nematic problem. F
thicknesses of the wetting layer much smaller than the p
ticle radius, we can approximate it by 6/R̄0

2. The third term
also appears when critical wetting is studied in systems w
a scalar order parameter. From the profiles in Fig. 3,
observe that, at the critical temperature,dQ̄/dr̄u r̄ 5R̄0

andQ̄0

only weakly depend on 1/R̄0. With dQ̄/dr̄u r̄ 5R̄0
.20.07,

FIG. 5. Critical anchoring strengthw* ~triangles! and anchoring
strengthwt ~circles!, where the prewetting line intersects the coe

istence line att IN , plotted as a function of 1/R̄0. As a guide to the
eye, the lines connect the numerical data points.

FIG. 6. Critical temperaturet* ~1! as a function of the inverse

particle radius 1/R̄0. The horizontal dotted line indicates the bu
transition temperaturet IN50.125. The solid and dashed lines a
estimates fort* ~see the text for details!.
4-5
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FUKUDA, STARK, AND YOKOYAMA PHYSICAL REVIEW E 69, 021714 ~2004!
Q̄0* .0.46, and 1/r̄→1/R̄0, we write the third term as 0.3/R̄0.
The second and third terms can now be viewed as an e
tive shift in temperature due to curvature which appro
mately readsdt.6/R̄0

210.3/R̄0. We use it to estimate the

critical temperature as t* 5tplanar* 2dt59/6426/R̄0
2

20.3/R̄0 which corresponds to the solid line in Fig. 6.
represents a good estimate of the numerical data. Deviat
grow with an increase of 1/R̄0, as expected. If we just retai
the linear term in 1/R̄0, which appears in scalar-orde
parameter theory, the dashed line results. In comparing
lines, it is obvious that distortion of the director field, sp
cific to nematic liquid crystals, has a non-negligible effect
the wetting of curved surfaces.

IV. CONCLUSION

Using generalized Maxwell construction, we discuss
the boundary-layer transition in a nematic liquid crystal s
rounding a spherical particle above the bulk isotropi
nematic transition temperature. For varying particle radii,
determined the prewetting line to be a function of the te
perature and the surface-coupling parameter. The prewe
line ends at a critical point. Furthermore, it shrinks with
decrease in particle radius and vanishes completely belo
critical radius of the order of 100 nm. In contrast to conve
tional systems studied so far, with their scalar order para
eter ~e.g., binary fluids!, the nematic tensor order paramet
allows elastic distortion in the preferred orientational a
~director field!. Splay deformation in the nematic wettin
layer around spherical particles gives rise to an effective s
in temperature. Based on this interpretation, we introduce
good estimate for the critical temperature as a function of
inverse particle radius. It demonstrates that director dis
tions significantly alter the prewetting transition compared
standard scalar-order-parameter theory@9#.

Several extensions of this work are possible. The first i
take the Nobili–Durand surface free energy@W(Qab

2Qab
(0))2/2# which is quadratic in the tensor order parame

@28#. As we already pointed out, the main goal of this artic
was to introduce a method by which to study boundary-la
transitions in the presence of curvature and to clarify
main consequences of curvature. We do not expect dram
changes when using Nobili–Durand surface free energy.
uniaxial homeotropic anchoring it becomesW(Q2Qs)

2/2
that contains two parameters, the anchoring strengthW and
the preferred scalar surface order parameterQs . We already
know the boundary-layer phase diagram in this case fo
planar surface@16,29#: for Qs smaller than the bulk valueQb
of the nematic phase, complete wetting cannot occur. Ab
Qb the prewetting line becomes a surface in the temperat
Qs-W phase diagram which ends in a critical line. We exp
this surface to vanish gradually with an increase in inve
particle radius.

A second extension concerns temperatures belowt IN . We
already pointed out that splay distortions close to a spher
particle introduce a shift in temperature which also low
the isotropic–nematic transition temperature. It would be
teresting to study the consequences for orientational o
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around the particle. However, our assumption of radial sy
metry no longer makes sense since far from the parti
where the liquid crystal has already condensed into nem
phase, a radial director field is unrealistic. On the other ha
with the more realistic uniform director field at infinity, w
no longer have an effective one-dimensional problem, so
complexity of the problem increases. Nevertheless, some
sight into this modified system could also add to understa
ing of the properties of recently observed soft solids@30#,
i.e., cellular structures whose walls are made up of part
agglomerates and whose cells are filled by nematic phase
course, deep in the nematic phase typical configurati
around a spherical particle will occur@31#.

As a third extension, one can also study planar ancho
of liquid crystal molecules. In the case of a planar substr
this was done by Sluckin and Poniewierski@17# who dis-
cussed a wealth of new phenomena, including the occurre
of a biaxial surface state and the possibility of a Kosterlit
Thouless–Halperin–Nelson–Young transition. It would
interesting to extend the study to curved surfaces, espec
spheres and for a uniaxial order parameter, where the to
ogy requires the existence of surface defects with to
charge of12 @32#. In a purely two-dimensional~2D! nem-
atic, the total charge is realized by four11/2 disclinations
sitting on the vertices of a tetrahedron@33#. In the case of
wetting layers, we can show that for appropriate surface c
pling parameters the four11/2 disclinations still exist but
are realized by a biaxial order parameter field@34#.

Before concluding this article we want to comment
experimental observation of nematic wetting layers of is
lated spheres and the effect of curvature on the prewet
line. Clearly, the wetting layer affects the Stokes drag o
particle and hence its Brownian motion since they are
servable with dynamic light scattering in conventional c
loidal dispersions@35#. Early experiments on liquid crysta
colloids using dynamic light scattering detected an incre
in Stokes drag close to the isotropic–nematic transition@36#.
We suggest the use of more refined experiments with vary
particle radii to examine the details reported in this artic
Quantitative predictions for Stokes drag have to be based
dynamic equations that involve the tensorial order param
@37# so, therefore, they present a more complicated probl
Based on our knowledge of Stokes drag deep in the nem
phase@38#, we are currently thinking along this line.

Considering the recent growing interest in liquid crys
colloidal dispersions, we hope that this article stimulates f
ther experimental as well as theoretical studies on wet
phenomena in these systems.
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